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An attempt is made to go beyond the distorted-wave Born approximation

addressed to the grazing-incidence small-angle X-ray (GISAX) scattering from

a random rough surface. The integral wave equation adjusted with the Green

function formalism is applied. To find out an asymptotic solution of the non-

averaged integral wave equation in terms of the Green function formalism, the

theoretical approach based on a self-consistent approximation for the X-ray

wavefunction is elaborated. Such an asymptotic solution allows one to describe

the reflected X-ray wavefield everywhere in the scattering (�, ’) angular range,

in particular below the critical angle �cr for total external reflection (� is the

grazing scattering angle with the surface, ’ is the azimuth scattering angle; �0 is

the grazing incidence angle). Analytical expressions for the reflected GISAX

specular and diffuse scattering waves are obtained using the statistical model of

a random Gaussian surface in terms of the r.m.s. roughness and two-point

cumulant correlation function. For specular scattering the conventional Fresnel

expression multiplied by the Debye–Waller factor is obtained. For the reflected

GISAX diffuse scattering the intensity of the Rdif(�, ’) scan is written in terms of

the statistical scattering factor ~�� �; �0ð Þ and Fourier transform of the two-point

cumulant correlation function. To be specific for isotropic solid surfaces, the

statistical scattering factor ~�� �; �0ð Þ and Fourier transform of the two-point

cumulant correlation function parametrically depend on the root-mean-

square roughness � [ ~�� �; �0ð Þ = 0 for � = 0] and cumulant correlation length ‘,

respectively. The reflected Rdif(�, ’) scans are numerically simulated for the

typical-valued {�0, �, ‘} parameters array.

1. Introduction

As is well known, the X-ray scattering technique is a powerful

tool for the non-destructive characterization of solid media,

thin layers and multilayered structures ranging from a few

nanometres up to some micrometres (see, e.g., Levine et al.,

1989; Pietsch et al., 2004; Schmidbauer et al., 2008; Gilles et al.,

2009; Zozulya et al., 2008 and references therein). This so-

called mesoscopic scale range is of physical interest and

notably important for investigating the self-organized forma-

tion of semiconductor nanostructures. X-ray scattering tech-

niques have proved to be very effective for non-destructive

characterization of semiconductor quantum dots and wires

(Schmidbauer et al., 2008). Recently, the electron density of

epitaxic SiGe nano-islands was determined using coherent

scattering in grazing-incidence small-angle X-ray (GISAX)

scattering (Zozulya et al., 2008).

To date, many experimental and theoretical works have

been reported with the GISAX scattering from rough surfaces

and/or interfaces. Most of them have been concerned with the

specularly reflected GISAX scattering that has been mainly

interpreted in terms of the Fresnel reflection and transmission

coefficients multiplied by the corresponding Debye–Waller

factors. The latter are exponential factors and quadratically

depend on the root-mean-square (r.m.s.) roughness � of a

random rough interface (Nevot & Croce, 1980; de Boer, 1994,

1995; Lazzari, 2002; Chukhovskii, 2009; Chukhovskii & Poly-

akov, 2010).

It is interesting to notice that an endeavour to go beyond

the Debye–Waller approximation for the specular reflection

and transmission coefficients is made in Chukhovskii &

Polyakov (2010), taking into account the X-ray multiple

scattering effects.

On the other hand, the reflected GISAX diffuse scattering

intensity, Rdif(�, ’; �0) scan (� is the grazing scattering angle

with the surface, ’ is the azimuth scattering angle; �0 is the

grazing incidence angle), which can be recorded with the

necessary resolution in all the two (three) dimensions in

angular space {�, ’; �0}, is notably informative (Schmidbauer et

al., 2008). Noteworthy is the fact that in order to describe the
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reflected GISAX diffuse scattering from statistically rough

surfaces, particularly peaks in Rdif(�, ’; �0) scans when the

incident wavevector k0 or scattered wavevector k makes an

angle with the surface (z = 0) close to the critical angle �cr for

total external reflection (‘Yoneda’s scattering’; Yoneda, 1963),

the first-order Born approximation is invalid and the

distorted-wave Born approximation (DWBA) is required

(Sinha et al., 1988).

Quite some time ago, in the scope of the first-order

perturbation theory, slightly diverse theoretical approaches

aiming to solve the stationary wave equation describing the

X-ray wavefield propagation within two media separated by a

random rough interface were proposed (Petrashen’ et al.,

1983; Vinogradov et al., 1985). To be specific, in Vinogradov et

al. (1985) using the conventional first-order perturbation

theory in the framework of the Green function formalism the

solution of the integral wave equation was obtained and the

reflected Rdif(�, ’) scans have been calculated and analysed

[hereafter the argument �0 in Rdif(�, ’; �0) scan is assumed to

be fixed and omitted for simplicity].

In general, the Green function formalism is a very powerful

tool for the theoretical investigation of the reflected GISAX

scattering. At the same time, clearly, the first-order pertur-

bation theory has some validity provided that the parameter

max(k0z, kz)� is rather small. In turn, it does not yield correct

quantitative results, particularly for relatively large angles

{�, �0} of X-ray scattering, when the above-mentioned condi-

tion does not hold. While there may be similarities to the first-

order perturbation theory, there remain major quantitative

differences, at least.

For reference, the X-ray wavelength � is of the order of

0.1 nm, the complex electric susceptibility � � Re� + iIm�,

Re� < 0 and Im� > 0. In the case under consideration the

X-ray wavelength � is of the order of 0.1 nm, Re� ’ �10�5

and Im� ’ 0.05|Re�| are assumed.

A challenge in the reflected GISAX scattering is the issue of

determining the medium density associated with the critical

angle for total external reflection, �cr = (�Re�)1/2, and the

r.m.s. interface roughness � from the experimental Rdif(�, ’)

scan and/or alternatively specular reflectivity data. In fact,

most of the experimental and theoretical studies of the

GISAX scattering from statistically random surfaces and/or

interfaces have been carried out over the wide angular range

of X-ray scattering, max{�, �0} > �cr, and the r.m.s. roughnesses

� that are of the order of a few nanometres (e.g. Petrashen’ et

al., 1983; Vinogradov et al., 1985; Sinha et al., 1988; Pietsch et

al., 2004; Bridou et al., 2006; Chukhovskii, 2009). Clearly, the

conventional first-order perturbation theory is invalid when

the reflected X-ray wavefield amplitude becomes of the order

of unity (e.g. below the critical angle �cr for total external

reflection). The DWBA method consists of evaluating the first-

order scattering matrix element between the Fresnel wave-

function eigenstates (Sinha et al., 1988). At the same time, how

to choose and evaluate the perturbation matrix element is

rather complicated and not evident from the mathematical

and physical viewpoint. Despite these limitations, with due

care the DWBA method was needed to describe the reflected

GISAX scattering when the r.m.s. roughness � is not relatively

small, at least.

The Green function formalism may be applied for solving

the integral wave equation in an attempt to go beyond the

DWBA method. It is hoped that the Green function formalism

is favourable if it concerns a quantitative analysis of the

reflected GISAX diffuse scattering Rdif(�, ’) scans and one

aims to retrieve the physical surface parameters of interest

neither supposing a relative smallness of the r.m.s. roughness �
nor using the first-order Born approximation.

In this paper, the concept of the Green function formalism

is pushed one step further and applied to describing the

GISAX scattering from a statistically rough interface of two

homogeneous media. A prerequisite for solving the integral

wave equation is to develop a new approach based on an

appropriate self-consistent approximation for the wavefunc-

tion and achieve results beyond the DWBA method.

In x2, as a compound of the Green function formalism, the

integral wave equation describing the GISAX wavefield

propagation within two media separated from each other by a

random rough interface is briefly derived (cf. Vinogradov et

al., 1985). As a kernel function, such an integral equation

contains the Green (point-source) function of a twofold

medium with a flat interface. From the mathematical view-

point the appropriate Green function is a bilinear combination

of the two linearly independent wavefunction eigenstates.

Physically, both these wavefunctions are the conventional

Fresnel solutions for the GISAX scattering issue in terms of

the plane waves propagating within a twofold flat-interface

medium in the direct and mirror-reversed scattering geometry.

In x3, using the wavefunction approximation in a self-

consistent sense (cf. Chukhovskii & Polyakov, 2010), an

asymptotic non-averaged solution of the integral wave equa-

tion for the reflected GISAX scattering issue is carried out.

Herein, the key idea is to approximate the wavefunction under

integration in the integral wave equation by the pseudo-plane

wavefunction that includes some phase factors provided its

continuity at the actual rough interface.

In x4, the statistical model of a random rough surface in

terms of the two-point cumulant correlation function

g2(|x1 � x2|/‘) is applied. Such a correlation function g2(|x1 �

x2|/‘) was first introduced by Kato (1980) for describing the

X-ray diffraction in statistically distorted crystals. Generally,

the function g2(|x1� x2|/‘) = 1 for x1 = x2 and g2(|x1� x2|/‘)!
0 for |x1 � x2|/‘!1, the vector x � x1 � x2 is directed along

the averaged flat surface (z = 0), ‘ is the cumulant correlation

length.

Then, in the scope of the Gaussian statistics, the analytical

expressions for the statistical scattering factor ~�� �; �0ð Þ and

reflected R(�, ’) scan for the X-ray radiation of specular and

diffuse wavefield components are derived. Unlike the Nevot–

Croce factor in the DWBA for the reflected specular wave

(Sinha et al., 1988), there now occurs the conventional Debye–

Waller factor.

In x5, the numerically calculated results related to the

normalized statistical scattering factors � �; �0ð Þ and reflected

diffuse scattering Rdif(�, ’) scans are presented and analysed
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depending on a dimensionless parameters array {k�, k‘, �0/�cr}

of interest.

2. Green function formalism

Let the incident unit plane wave Einc(r) = exp(ik0r) impinge on

a rough interface separating vacuum and medium. The X-ray

wavefield component polarized parallel to the averaged flat

surface z = 0 (TE polarization) is assumed to be under

consideration; k0 = (q0, k0z) is the incident wavevector, q0 is

the lateral wavevector component, k0z = (k2
� q0

2)1/2 is the

internal-normal wavevector component, k = |k0| is the wave-

number in a vacuum.

In the case of TE-polarized X-ray radiation the stationary

wave equation holds everywhere (recall that in the case of the

X-ray radiation polarized perpendicular to a plane formed by

the TE polarization vector and the incident wavevector, TM

polarization, for grazing incidence there are the same results

as for TE polarization; see, e.g., Sinha et al., 1988),

fr2 þ k2½1þ ��ðzÞ�gEðrÞ ¼ �k2��ðrÞEðrÞ; ð1Þ

where E(r) is the wavefunction for the TE-polarized electric

wavefield and

��ðrÞ ¼ �f�½z� hðxÞ� ��ðzÞg; ð2Þ

h(x) is the height of an actual rough surface at the point x

(assumed to be single valued); �(z) is the unit step function:

�(z) = 1 for z > 0 and �(z) = 0 for z < 0.

According to the Green function formalism the wave

equation (1) can be written in the integral form as (cf. Vino-

gradov et al., 1985)

EðrÞ ¼ E0ðrÞ � k2
R

d3r0Gðr; r0Þ��ðr0ÞEðr0Þ: ð3Þ

Herein, the Green (point-source) function G(r, r0) is given by

Gðr; r0Þ ¼ �ið4�Þ�2
R

d2q k�1
z ðqÞ þ �

�1
z ðqÞ

� �
� exp iqðx� x0Þ½ �

�
y2ðz; qÞy1ðz

0; qÞ; z � z0

y1ðz; qÞy2ðz
0; qÞ; z � z0

ð4Þ

everywhere in a twofold medium with the step-like electric

susceptibility �(r) = ��(z).

The functions y1(z, q) and y2(z, q) are the two linearly

independent solutions of the wave equation

ðd2y=dz2
Þ þ fk2

½1þ ��ðzÞ� � q2
gy ¼ 0 ð5Þ

over the variable z.

These functions can be chosen in the form of the conven-

tional Fresnel solutions

y1ðz; qÞ ¼

(
exp½ikzðqÞz� þ R1ðqÞ exp½�ikzðqÞz� for z � 0

T1ðqÞ exp½i�zðqÞz� for z � 0;

y2ðz; qÞ ¼

(
T2ðqÞ exp½�ikzðqÞz� for z � 0

exp½�i�zðqÞz� þ R2ðqÞ exp½i�zðqÞz� for z � 0

ð6Þ

in the direct and mirror-reversed scattering geometry.

In the case of a twofold medium with the averaged flat

interface z = 0, the Fresnel reflection coefficients, R1(q) and

R2(q), and transmission, T1(q) and T2(q), coefficients take the

form

R1ðqÞ ¼
kzðqÞ � �zðqÞ

kzðqÞ þ �zðqÞ
and R2ðqÞ ¼

�zðqÞ � kzðqÞ

kzðqÞ þ �zðqÞ
;

T1ðqÞ ¼
2kzðqÞ

kzðqÞ þ �zðqÞ
and T2ðqÞ ¼

2�zðqÞ

kzðqÞ þ �zðqÞ
; ð7Þ

where the wavevector components kz(q) and �z(q) with the

same lateral component q in a vacuum and medium are

introduced as follows [the vector q is parallel to the plane z =

0, �2 ¼ k2 1þ �ð Þ]

kzðqÞ ¼ ðk
2 � q2Þ

1=2;

�zðqÞ ¼ ð�
2 � q2Þ

1=2: ð8Þ

It is easily seen that owing to the pure incoming plane wave

Einc(r) = exp(ik0r), the free term E0(r) on the right-hand side

of the integral wave equation (3) should take the form

E0ðrÞ ¼ expðiq0xÞy1ðz; q0Þ: ð9Þ

Noteworthy is the fact that, as seen from the integral wave

equation (3), beyond the integration procedure over the

variables (q, x), the integration range over the variable z is

defined by {�[z � h(x)] � �(z)} and determines the asymp-

totic behaviour of the wavefunction E(x, z)|z! �1, which

physically describes the reflected GISAX scattering.

It is easily shown that implementing the perturbation theory

over solution of the integral wave equation (3) with substi-

tuting expression (9) as the initial wavefunction approxima-

tion into its right-hand side is effective, provided the small-

valued parameter max[k0z(q0), kz(q)]� (Vinogradov et al.,

1985). If the aforementioned parameter is of the order of unity

or more, as is well known, the first-order perturbation theory

approximation does not hold. While there may be similarities

to the first-order perturbation theory, there may remain some

differences with regard to qualitative features of the GISAX

scattering from a random rough surface, in the best case.

3. Self-consistent approximation

To overcome the problem, we will attempt to modify the basic

wavefunction approximation for solving the non-averaged

integral wave equation (3). A relevant procedure utilizes the

first-order perturbation theory as well but the wavefunction

on the right of equation (3) can be relatively well approxi-

mated in a self-consistent sense as

E½x; z; hðxÞ� ffi expðiq0xÞ

�

(
exp½ikzðq0Þz� þ R1ðq0Þ expf�ikzðq0Þ½z� 2hðxÞ�g for z � hðxÞ

T1ðq0Þ expfi½kzðq0Þ � �zðq0Þ�hðxÞ þ i�zðq0Þzg for z � hðxÞ:

ð10Þ

Unlike the free-term wavefunction (9), expression (10) is

chosen as the pseudo-plane wavefunction with some expo-

nential factors that provide the wavefunction continuity at an
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actual rough surface z = h(x) (cf. Chukhovskii & Polyakov,

2010).

Staying in the framework of the self-consistent wavefunc-

tion approximation [equation (10)] and substituting it into the

right-hand side of the integral wave equation (3), after the

straightforward routine calculations for the Fourier transform

of the asymptotic wavefunction E(q, z) one obtains (z !

�1)

Eðq; zÞ ¼ ð2�Þ2	2ðq� q0Þ½expðikzzÞ þ R1ðq0Þ expð�ikzzÞ�

þ f ðq; q0Þ exp½�ikzðqÞz�: ð11Þ

Above, the scattering amplitude f(q, q0) is properly determined

as the Fourier transform

f ðq; q0Þ ¼ �
�k2

2kzðqÞ

Z
d2x exp½ixðq0 � qÞ�Z½q; q0; hðxÞ�; ð12Þ

where

Z½q; q0; hðxÞ�

¼ T1ðqÞ

 
expfi½kzðq0Þ þ �zðqÞ�hðxÞg � 1

kzðq0Þ þ �zðqÞ

þ R1ðq0Þ exp½2ikzðq0ÞhðxÞ�
expfi½�kzðq0Þ þ �zðqÞ�hðxÞg � 1

�kzðq0Þ þ �zðqÞ

!

for hðxÞ � 0;

¼ T1ðq0Þ expfi½kzðq0Þ � �zðq0Þ�hðxÞg

�

 
expfi½kzðqÞ þ �zðq0ÞhðxÞ�g � 1

kzðqÞ þ �zðq0Þ

þ R1ðqÞ
expfi½�kzðqÞ þ �zðq0ÞhðxÞ�g � 1

�kzðqÞ þ �zðq0Þ

!

for hðxÞ � 0 ð13Þ

is the non-averaged complex scattering length along the z axis,

for evaluating that the Green function presentation [equation

(4)] as well as explicit expressions (6)–(7) were directly

utilized.

Except for the term of the incident plane wave such that

2�ð Þ2	2 q� q0ð Þ exp ikzz
� �

, expressions (11)–(12) can be used

to evaluate the reflected GISAX intensity distribution

[	2 q� q0ð Þ is the two-dimensional delta function]

dRð�; ’Þ

d�
¼ ð2�Þ�2

k2 sin2 �

sin �0

� S�1
2 j ð2�Þ

2	2ðq� q0ÞR1ðq0Þ þ f ðq; q0Þ j
2; ð14Þ

that is statistically averaged over the random rough surface.

For reference, the symbol . . .j j2 indicates an average

procedure, d� = cos � d� d’ is the elementary solid angle for

the reflected beam, S2 is an area of the reference surface

illuminated by incident X-rays.

To fulfill an average procedure on expression (14) under

consideration in the explicit form, one has to specify a statis-

tical model of the surface and then averaging equation (14)

may be carried out.

4. Averaging over a random rough surface – the two-
point cumulant correlation function

As is already known (see, e.g., Sinha et al., 1988; Chukhovskii

& Polyakov, 2010), the statistical properties of a random rough

surface are defined in terms of the r.m.s. roughness

� ¼ ½hðxÞ2�1=2 and height–height correlation function

K2ðjx� sj=
Þ ¼ ��2hðxÞhðsÞ; ð15Þ

where 
 is the height–height correlation length along the

isotropic surface.

For many isotropic solid surfaces such a function can be

written as

K2ðjx� sj=
Þ ¼ exp½�ðjx� sj=
Þ2ð3�DsÞ� ð2<Ds < 3Þ ð16Þ

where the real value Ds is the self-affine surface fractal

dimension which determines the texture of the surface

roughness (Mandelbrodt, 1982; Voss, 1985). For instance,

values of Ds approaching 2 produce various kinds of physical

surfaces like smooth hills and valleys. The height–height

correlation function given by expression (16) is of physical

interest, since it totally embraces properties of the so-called

self-affine surfaces (Sinha et al., 1988).

To clarify the statistical properties of the random rough

surface and, in particular, evaluate the reflected GISAX

intensity [equation (14)], we will utilize the result that if

B[h(x)] is a fluctuating quantity, then

jAþ
R

d2x exp½iðq0 � qÞx�B½hðxÞ�j2

¼ jAþ B½hðxÞ�
R

d2x exp½iðq0 � qÞx�j2

þ B½hðxÞ�B
½hðxÞ� � jB½hðxÞ�j2
� �

S2

�
R

d2x exp½iðq0 � qÞx�g2½jxj=‘� ð17Þ

is the identity for a non-fluctuating term A.

The second term on the right relates to the reflected GISAX

diffuse scattering and is proportional to the Fourier transform

of the two-point cumulant correlation function g2(|x1 � x2|/‘)

that was first introduced by Kato (1980) for describing the

X-ray diffraction by statistically imperfect crystalline media so

that g2(|x1 � x2|/‘) = 1 for x1 = x2 and g2(|x1 � x2|/‘) tends to

zero for |x1� x2|!1, ‘ is the cumulant correlation length, k‘
>> 1 (cf. Polyakov et al., 1991).

Using equations (14) and (17) for a random Gaussian

surface, after straightforward evaluations one finds that the

reflected intensity distribution

dRð�; ’Þ

d�
¼ Rspecðq; q0Þ þ Rdifðq; q0Þ ð18Þ

can be properly split into a specular and a diffuse part.

The first term on the right yields the specular reflection

modified by the Debye–Waller factor fR
2 {recall that fR =

exp[�2kz
2(q0)�2]},

Rspecðq; q0Þ ¼ k2 sin2 �

sin �0

	2ðq� q0ÞjR1ðq0Þj
2f 2

R; ð19Þ

and the second term on the right yields the diffuse scattering

and is written as
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Rdifðq; q0Þ ¼ ð2�Þ
�2
j�j2

sin2 �

sin �0

k6

4k2
zðqÞ

~��ðq; q0Þ

�

Z
d2x exp½iðq0 � qÞx�g2ðjxj=‘Þ: ð20Þ

Herein, the statistical scattering factor ~�� q; q0ð Þ is given by [cf.

equations (12), (13), (17)]

~��ðq; q0Þ ¼ j Zðq; q0; hÞZ
ðq; q0; hÞ j � Zðq; q0; hÞ j2; ð21Þ

where the evaluated averages Z q; q0; hð ÞZ
 q; q0; hð Þ and

Z q; q0; hð Þ
		 		2 take the following forms:

Zðq; q0; hÞZ
ðq; q0; hÞ

¼ 0:5jaj2
n

exp½�0:5�2ð�� �
Þ2�Erfc½�ið�� �
Þ�=21=2�

� 2Re½expð�0:5�2�2ÞErfcð�i��=21=2Þ� þ 1
o

þ 0:5jbj2
n

exp½�0:5�2
ð�� �
Þ2�Erfc½�ið�� �
Þ�=21=2

�

� 2Re½expð�0:5�2�2
ÞErfcð�i��=21=2

Þ� þ 1
o

þ Re



ab

n

exp½�0:5�2
ð�� �
 � 
Þ2�Erfc½�ið�� �
 � 
Þ�=21=2

�

� exp½�0:5�2
ð�� 
Þ2�Erfc½�ið�� 
Þ�=21=2

�

� exp½�0:5�2
ð�
 þ 
Þ2�Erfc½ið�
 þ 
Þ�=21=2

�

þ expð�0:5�2
2
ÞErfcði
�=21=2

Þ

o�
þ 0:5jcj2

n
exp½�0:5�2

ð�þ � � �
 � �
Þ2�Erfc½ið�þ � � �
 � �
Þ�=21=2
�

� exp½�0:5�2
ð�þ � � �
Þ2�Erfc½ið�þ � � �
Þ�=21=2

�

� exp½�0:5�2
ð� � �
 � �
Þ2�Erfc½ið� � �
 � �
Þ�=21=2

�

þ exp½�0:5�2ð� � �
Þ2�Erfc½ið� � �
Þ�=21=2�

o
þ 0:5jdj2

n
exp½�0:5�2ð�þ � � �
 � �
Þ2�Erfc½ið�þ � � �
 � �
Þ�=21=2�

� exp½�0:5�2ð�þ � � �
Þ2�Erfc½ið�þ � � �
Þ�=21=2�

� exp½�0:5�2
ð� � �
 � �
Þ2�Erfc½ið� � �
 � �
Þ�=21=2

�

þ exp½�0:5�2
ð� � �
Þ2�Erfc½ið� � �
Þ�=21=2

�

o
þ Re



cd

n

exp½�0:5�2
ð�þ � � �
 � �
Þ2�Erfc½ið�þ � � �
 � �
Þ�=21=2

�

� exp½�0:5�2
ð�þ � � �
Þ2�Erfc½ið�þ � � �
Þ�=21=2

�

� exp½�0:5�2
ð� � �
 � �
Þ2�Erfc½ið� � �
 � �
Þ�=21=2

�

þ exp½�0:5�2
ð� � �
Þ2�Erfc½ið� � �
Þ�=21=2

�

o�
; ð22Þ

and

jZðq; q0; hÞj2

¼ 0:25
			ah expð�0:5�2�2ÞErfcð�i��=21=2Þ � 1

i
þ b

n
exp½�0:5�2ð�þ 
Þ2�Erfc½�i�ð�þ 
Þ=21=2�

� expð�0:5�2
2
ÞErfcð�i�
=21=2

Þ

o
þ c

n
exp½�0:5�2

ð�þ �Þ2�Erfc½i�ð�þ �Þ=21=2
�

� expð�0:5�2�2
ÞErfcði��=21=2

Þ

o
þ d

n
exp½�0:5�2

ð�þ �Þ2�Erfc½i�ð�þ �Þ=21=2
�

� expð�0:5�2�2
ÞErfcði��=21=2

Þ

o			2: ð23Þ
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Figure 1
The normalized statistical scattering factor �(�, �0) versus the grazing
scattering angle �/�cr. The critical angle �cr = (10)�5/2. The grazing
incidence angle �0/ �cr: (a) = 2, (b) = 3. The dimensionless r.m.s. roughness
k� = 35.

Figure 2
The normalized statistical scattering factor �(�, �0) versus the grazing
scattering angle �/�cr. The critical angle �cr = (10)�5/2. The grazing
incidence angle �0/ �cr: (a) = 2, (b) = 3. The dimensionless r.m.s. roughness
k� = 65.



Above, there is the complementary error function Erfc[w]

for complex w, and some combinations {�, �, 
, �, �, �} of

z-component wavevectors and partial scattering lengths

{a, b, c, d} related to diverse X-ray scattering processes are

defined as

� ¼ kzðq0Þ þ �zðqÞ; � ¼ �kzðq0Þ þ �zðqÞ; 
 ¼ 2kzðq0Þ;

� ¼ kzðqÞ þ �zðq0Þ; � ¼ �kzðqÞ þ �zðq0Þ; � ¼ kzðq0Þ � �zðq0Þ;

a ¼ T1ðqÞ=½�zðqÞ þ kzðq0Þ�; b ¼ T1ðqÞR1ðq0Þ=½�zðqÞ � kzðq0Þ�;

c ¼ T1ðq0Þ=½�zðq0Þ þ kzðqÞ�; d ¼ T1ðq0ÞR1ðqÞ=½�zðq0Þ � kzðqÞ�:

ð24Þ

As follows from equations (23)–(24), the Gaussian-averaged

complex scattering length Z q0; q0; hð Þ that concerns the

GISAX specular reflection is equal to (one puts q = q0 and � =

�, � = � = ��, � = � + 
; a = c = �b = �d at specular)

Zðq0; q0; hÞ ¼ 1� expð�0:5�2
2Þ
� � 2kzðq0ÞR1ðq0Þ

�k2
: ð25Þ

As a result, expression (19) is nothing but the specular Fresnel

reflection intensity Rspec q; q0ð Þ versus the variable q along with

the Debye–Waller factor fR
2, unlike the Nevot–Croce factor as

has been previously obtained using the DWBA (Sinha et al.,

1988).

Before proceeding further, one needs to make the following

comment. As pointed out by Sinha et al. (1988), the optical

theorem, the basic principle of the scattering theory, is not

satisfied by the first-order Born approximation or the DWBA.

At present, there are no proofs that the first-order self-

consistent approximation [equation (10)] for solving the basic

integral wave equation (3) automatically provides the optical

theorem implementation. This theoretical issue is opened for

future work in the scope of the rigorous GISAX scattering

approach. Such an approach does not use any perturbation

theory and is based on implementation of a cumulant average

diagram technique that allows one to transform the non-

averaged wave equation (3) to the Bethe–Salpeter equation

describing the GISAX diffuse scattering from statistically

rough surfaces (cf. Polyakov et al., 1991).

In-depth analysis of expressions (20)–(23) shows that

the statistical scattering factor ~�� q; q0ð Þ reduces to

�2|T1(q)|2|T1(q0)|2 + 0(�3) provided that the inequality � �
max[|�|, |� + 
 |, |
|, |� + �|, |� + �|, |�|] << 1 holds, and then

expression (20) goes over to the corresponding one for the

reflected GISAX diffuse scattering in

the first-order Born approximation

as expected (Vinogradov et al., 1985).

For this, when the incident wave-

vector k0 along with q0 = kcos �0, or

scattered wavevector k along with q

= kcos �, makes a grazing angle close

to �cr the statistical scattering factor

~�� q; q0ð Þ has a maximum owing to

|T1(q)|2 or |T1(q0)|2.

On the other hand, one may

expect that in a general case when

the aforementioned inequality fails

the statistical scattering factor

~�� q; q0ð Þ versus argument q may reach

a maximum at the grazing scattering

angle � close to �cr [see the numeri-

cally calculated ~�� q; q0ð Þ in the next

section]. The result is that the

reflected GISAX diffuse scattering

intensity Rdif q; q0ð Þ versus q = kcos �
can have a peak (Yoneda, 1963)

whenever � or �0 is equal to �cr.

Going one step further, to evaluate

the diffuse scattering intensity

according to equation (20), we will

approximate the two-point cumulant

correlation function g2(|x|/‘) as

g2ðjxj=‘Þ ¼ exp½�jxj=‘Þ�: ð26Þ

Substituting equation (26) into the

right-hand side of equation (20) and

evaluating the Fourier transform of

the function g2(|x|/‘) yields
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Figure 3
The numerically simulated two-dimensional contour plot and three-dimensional plot of the normalized
GISAX Rdif(�, ’)/Rdif(�0, 0) scans. The grazing incidence angle �0/�cr = 2. The dimensionless r.m.s.
roughness k� = 35. The dimensionless cumulant correlation length k‘: (a) = 5 � 103, (b) = 5 � 104.



Rdifðq; q0Þ ¼
j�j2k2 ~��ðq; q0Þ

8� sin �0

�
k2‘2

f1þ k2‘2½ðcos � cos ’� cos �0Þ
2
þ cos2 � sin2 ’�g3=2

:

ð27Þ

It is easy to show that for k‘�0 >> 1 the reflected GISAX

diffuse scattering intensity Rdif q; q0ð Þ seems to be similar to

the two-dimensional delta function 	2(q � q0).

Then, one can simply obtain the upper estimate of the

integrated intensity of diffuse scattering R
ðintÞ
dif ðq0Þ as follows

(� 6¼ 0):

R
ðintÞ
dif ðq0Þ ) ð1� fRÞ

2
jR1ðq0Þj

2�ðq0; q0Þ; ð28Þ

where

�ðq; q0Þ ¼
j Zðq; q0; hÞZ
ðq; q0; hÞ j

j Zðq; q0; hÞ j2
� 1

� 

ð29Þ

is the normalized statistical scattering factor [cf. equations

(21), (25)] and assuming q = q0 in equation (29).

Expression (28) is a manifestation of the fact that for k‘�0

>> 1 the integrated intensity of diffuse scattering R
ðintÞ
dif ðq0Þ is

mainly composed of the grazing scattering angle region �� �
(k‘�0)�1 around � = �0 and the azimuth angle region �’ �
(k‘)�1 close to ’ = 0 (’ = 0 at specular).

Thus, mathematical foundations for describing the reflected

GISAX scattering from random Gaussian surfaces condense

into the formula assembly [equations (20)–(24)]. They are

fundamentally based on implementing the self-consistent

wavefunction approximation [equation (10)] to search the

non-averaged solution of the integral wave equation (3)

alongside the two-point cumulant correlation function

approach for evaluating the statistical scattering factor

[equation (21)]. Both these physical prerequisites seem to be

very effective at providing the statistically averaged GISAX

scattering intensity [equation (14)].

5. Numerical run-through for displaying the reflected
GISAX diffuse scattering

Hereafter, the results of numerical calculations in the frame-

work of the theoretical foundation proposed are presented

and it is shown how the GISAX

diffuse scattering from a random

rough surface can be interpreted in

terms of the surface parameters of

interest.

As an example, using the theore-

tical expressions (21)–(24) and (29),

the normalized statistical scattering

factors �(�, �0) versus the grazing

scattering angle �/�cr are numerically

evaluated for the two values of

grazing incidence angle �0/�cr: (Figs.

1a and 2a) = 2, (Figs. 1b and 2b) = 3

and the dimensionless r.m.s. rough-

ness k� = 35, 65 (Figs. 1, 2). It is seen

that both the numerically evaluated

factors �(�, �0) as functions of �/�cr

have maxima close to the value of

�/�cr = 1. Respectively, in general,

they provide peaks in the reflected

GISAX diffuse scattering (Yoneda,

1963).

In the case when �0/�cr = 2 the

calculated factors �(�0, �0) are

approximately two times more than

the corresponding ones for �0/�cr = 3

for the same value of k� (cf. Figs. 1a

and 2a, and Figs. 1b and 2b).

It is easy to see that the calculated

factors �(�cr, �0) at � = �cr

decrease (increase) with increasing

(decreasing) r.m.s. roughness � (see

Figs. 1 and 2).

According to expression (27)

the numerically simulated two-
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Figure 4
The numerically simulated two-dimensional contour plot and three-dimensional plot of the normalized
GISAX Rdif(�, ’)/Rdif(�0, 0) scans. The grazing incidence angle �0/�cr = 3. The dimensionless r.m.s.
roughness k� = 35. The dimensionless cumulant correlation length k‘: (a) = 5 � 103, (b) = 5 � 104.



dimensional contour plots and three-dimensional plots of the

normalized GISAX diffuse scattering intensity Rdif(�, ’)/

Rdif(�, 0) are presented for the dimensionless r.m.s. roughness

k�: (Figs. 3 and 4) = 35, (Figs. 5 and 6) = 65. The following

values have been assumed for the normalized grazing

incidence angle �0/�cr: (Figs. 3, 5) = 2, (Figs. 4, 6) = 3 and

dimensionless cumulant correlation length k‘: (Figs. 3a, 4a, 5a,

6a) = 3.5 � 103, (Figs. 3b, 4b, 5b, 6b) = 4.5 � 104.

As follows from all the numerically simulated Rdif(�, ’)/

Rdif(�, 0) scans, they are a manifestation of the fact that when �
’ �cr, the GISAX diffuse scattering has a ‘Yoneda scattering’

peak (Yoneda, 1963), the magnitude of which depends

strongly on the dimensionless cumulant correlation length k‘:

Yoneda’s peak value rises (reduces) with decreasing

(increasing) the dimensionless parameter k‘.
Loosely speaking, any GISAX diffuse scattering intensity

scan represents by itself the product of the two terms, the

statistical scattering factor ~�� �; �0ð Þ and Fourier transform of

the two-point cumulant correlation function. The statistical

scattering factor ~�� �; �0ð Þ has a narrow maximum at � ’ �cr

(Yoneda’s peak), whereas the Fourier transform of the two-

point cumulant correlation function has a broader maximum

at � ’ �0, the width of which depends on the dimensionless

cumulant correlation length k‘. That is a peculiarity of the

normalized GISAX Rdif(�, ’)/Rdif(�0, 0) scan formation. One

may clearly see it in Figs. 3–6, particularly as a shift of the

second maximum of the Rdif(�, ’)/Rdif(�0, 0) scan as a function

of incident angle � in Fig. 3(b) where �0 = 2�cr to Fig. 6(b),

where �0 = 3�cr.

It needs to be remembered that, in averaging over random

Gaussian surfaces, we have applied the two-point cumulant

correlation function approach for splitting the X-ray scattering

intensity into specular and diffuse scattering parts. It has

allowed us to obtain the analytical expression [equations (19)–

(20)] for both the specular and diffuse scattering waves. Once

more, the case occurs where the two-point cumulant correla-

tion function [equation (26)] is identical with the height–

height correlation function, provided that the r.m.s. roughness

� is relatively small and the first-order Born approximation for

solving the integral wave equation (3) works more or less well

(cf. Vinogradov et al., 1985).

At the same time, by evaluating the statistical scattering

factor ~�� q; q0ð Þ in terms of the height–height correlation

function [equation (16)] and comparing it with the corre-

sponding expresssion given in terms

of the two-point cumulant correlation

function [equation (26)], one may

link both the correlation functions.

As a result, based on the mathe-

matical formalism elaborated and

minimizing the GISAX diffuse scat-

tering error functional, e.g. in the

framework of a direct �2 fit algorithm

iterative procedure in a least-square

fashion, retrieving physical para-

meters of real rough surfaces from

the experimental high-resolution

diffuse scattering data becomes a

reality.

6. Results and discussion

Analytical and numerical results

presented in xx2–5 support the key

idea of our study to go beyond the

DWBA and the first-order Born

approximation as well regarding

the GISAX scattering. For this, the

integral wave equation (3) provides

a rigorous description of the X-ray

wavefield propagation through the

twofold medium and it is adjusted

with the Green function formalism

and the statistical model of a

random Gaussian surface using the

two-point cumulant correlation

function approach. Unlike in the

DWBA method, we have used

the self-consistent approximation for
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Figure 5
The numerically simulated two-dimensional contour plot and three-dimensional plot of the normalized
GISAX Rdif(�, ’)/Rdif(�0, 0) scans. The grazing incidence angle �0/�cr = 2. The dimensionless r.m.s.
roughness k� = 65. The dimensionless cumulant correlation length k‘: (a) = 5 � 103, (b) = 5 � 104.



the wavefunction to find out the basic solution of the

non-averaged equation (3). Such a solution has allowed us

to describe the GISAX scattering for any scattering angles

�, in particular below the critical angle �cr for total external

reflection. Expression (19) for the specular reflection obtained

in terms of the self-consistent approximation agrees with the

Fresnel expression multiplied by the Debye–Waller factor.

The analytical expressions for the statistical scattering

factor ~�� q; q0ð Þ and reflected GISAX diffuse scattering

Rdif(�, ’) scan have been carried out for random Gaussian

surfaces in terms of the r.m.s. roughness � and cumulant

correlation length ‘.

The upper estimate of the GISAX diffuse scattering integral

intensity [equation (28)] is presented at large values of k‘
when the parameter k‘�0 is more than unity.

The run-through of the numerically simulated Rdif(�, ’) scans

for the typical parameter values of {�0/�cr, k�, k‘} has been

displayed. Basically, they have been the manifestation of the

fact that their shape and contrast, in particular the appearance

of Yoneda’s peaks at � ’ �cr, mainly depend on the value of

the parameter k‘ associated with a random rough surface.

The present theoretical approach at its core is based on two

major physical prerequisites.

One of them is that approximating the wavefunction near a

random rough surface in a self-consistent sense is very

important for searching the basic approach to solve the non-

averaged integral wave equation. Another is that applying the

rough-surface model in terms of the two-point cumulant

correlation function seems to be effective for providing a

statistical average of the reflected GISAX intensity

concerning specular and diffuse scattering. Both these

physical assumptions have allowed us to model the Rdif(�, ’)

scans regarding the GISAX scattering from random rough

surfaces.

On the other hand, the latter can be applied for analysing

the experimental GISAX diffuse scattering from random

rough surfaces (e.g. in the framework of an iterative �2 fit

procedure) and, finally, to retrieve physical information

concerning the roughness characteristics and the length scales

of the order of the height–height correlation length.

It should be mentioned once more that the theoretical

approach presented is valid only for a random Gaussian

surface that models real solid surfaces

quite well, as pointed out in Sinha et al.

(1988).

The question of whether this theo-

retical approach has any validity in

cases of real solid surfaces [e.g. if the

roughness is highly correlated with the

atomic arrangements; see Sinha et al.

(1988) for more detailed discussion] or

whether it should be given up in favour

of other approaches, which should be

developed anew, remains a good topic

for future work.

To be specific, of greater interest may

be future investigation to justify the

present theoretical approach for eval-

uating the reflected GISAX diffuse

scattering by implementation of a

general cumulant average technique

(Polyakov et al., 1991).

Finally, it is hoped that modelling the

reflected GISAX diffuse scattering

angular scans in terms of the presented

self-consistent wavefunction approx-

imation and statistical approach based

on the two-point cumulant correlation

function can be favourably applied to

the retrieval of physical parameters of

real solid and liquid surfaces using

experimental high-resolution X-ray

scattering data.

Valuable discussions with V. A.

Bushuev, I. V. Kozhevnikov, A. M.

Polyakov and S. V. Salikhov are grate-

fully acknowledged.
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Figure 6
The numerically simulated two-dimensional contour plot and three-dimensional plot of the
normalized GISAX Rdif(�, ’)/Rdif(�0, 0) scans. The grazing incidence angle �0/�cr = 3. The
dimensionless r.m.s. roughness k� = 65. The dimensionless cumulant correlation length k‘: (a) = 5�
103, (b) = 5 � 104.
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